Połączyli biologię z elektroniką
Katalog znalezionych hasełArchiwum
- Moje najwiÄksze skarby i opowieĹci prosto z mojego
- [E30] Elektrycznie uchylane tylne szybki w e30 coupe
- Naprawa dorazna elektrycznej przepustnicy kontrolka EML
- UE: e-sklepy z elektroniką naruszają prawa konsumentów
- Specjalista ds. Obsługi Klienta Podpisu Elektronicznego
- elektryka tylnich szyb e 46 compact
- kubełki bmw grzane ,elektryczne, skóra
- Elektryczne auta z Polski ruszają na drogi
- Triker trójkolowy elektryczny pojazd koncepcyjny
- Księżycowe kratery mogą być naładowane elektrycznie
- Dzięki gumie staniemy się chodzącymi elektrowniami
- zanotowane.pl
- doc.pisz.pl
- pdf.pisz.pl
- opinie-fall.htw.pl
Moje najwiÄksze skarby i opowieĹci prosto z mojego
W dalszej przyszłości dzięki bioelektronice mogą powstać potężne komputery. Systemy biologiczne są w stanie przetwarzać różne informacje znacznie sprawniej niż najpotężniejszy superkomputer. Wystarczy wspomnieć o przetwarzaniu i rozpoznawaniu obrazów czy dźwięków. Dla każdego zdrowego zwierzęcia jest to zadanie banalnie łatwe, a przekracza możliwości współczesnych maszyn. Obwody elektroniczne korzystające ze złożonych komponentów biologicznych mogą być znacznie bardziej wydajne - mówi Aleksandr Noy, szef projektu badawczego w LLNL.

Dotychczas próbowano łączyć mikroelektronikę z materiałami biologicznymi, nigdy jednak nie osiągnięto odpowiedniego poziomu integracji. Dzięki stworzeniu nanomateriałów o skali wielkości porównywalnej z wielkością molekuł biologicznych możemy silnie zintegrować te systemy - stwierdza Noy.
Jego zespół wykorzystał powszechnie spotykane w komórkach błony lipidowe. Tworzą one stabilne, samoregenerujące się systemy, które są jednocześnie nieprzenikalnymi barierami dla jonów i niewielkich molekuł. Trzeba też wspomnieć, że błony te mogą zawierać olbrzymią liczbę maszyn złożonych z białek. Maszyny te przeprowadzają wiele operacji, takich jak rozpoznawanie, transport czy przesyłanie sygnałów w komórce - stwierdza Nipun Misra, jeden z członków zespołu badawczego.
Naukowcy użyli dwuwarstwowej błony lipidowej, za pomocą której odizolowali nanokable w krzemowym tranzystorze od roztworu. Dzięki takiemu rozwiązaniu mogli wykorzystać pory w błonie do decydowania, którędy jony mogą przenikać do nanokabli. Pozwala to na kontrolowanie transportu jonów oraz działania białek w membranie. Eksperymenty wykazały bowiem, że zmieniając napięcie w bramce tranzystora można zamykać i otwierać pory.
kopalniawiedzy.pl